我们一般通过表达式$sum来计算总和。因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:
1,统计符合条件的所有文档的某个字段的总和;
2,统计每个文档的数组字段里面的各个数据值的和。这两种情况都可以通过$sum表达式来完成。
以上两种情况的聚合统计,分别对应与聚合框架中的 $group
操作步骤和 $project
操作步骤。
1.$group
直接看例子吧。
Case 1
测试集合mycol中的数据如下:
{ title: 'MongoDB Overview', description: 'MongoDB is no sql database', by_user: 'runoob.com', url: 'http://www.runoob.com', tags: ['mongodb', 'database', 'NoSQL'], likes: 100 }, { title: 'NoSQL Overview', description: 'No sql database is very fast', by_user: 'runoob.com', url: 'http://www.runoob.com', tags: ['mongodb', 'database', 'NoSQL'], likes: 10 }, { title: 'Neo4j Overview', description: 'Neo4j is no sql database', by_user: 'Neo4j', url: 'http://www.neo4j.com', tags: ['neo4j', 'database', 'NoSQL'], likes: 750 }
现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算
db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
查询结果如下:
/* 1 */ { "_id" : "Neo4j", "num_tutorial" : 1 }, /* 2 */ { "_id" : "runoob.com", "num_tutorial" : 2 }
Case 2
统计每个作者被like的总和,计算表达式:
db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
查询结果如下;
/* 1 */ { "_id" : "Neo4j", "num_tutorial" : 750 }, /* 2 */ { "_id" : "runoob.com", "num_tutorial" : 110 }
Case 3
上面例子有些简单,我们再丰富一下,测试集合sales的数据如下:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") } { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") } { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") } { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") } { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
需要完成的目标是,基于日期分组,统计每天的销售额,聚合公式为:
db.sales.aggregate( [ { $group: { _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } }, totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } }, count: { $sum: 1 } } } ] )
查询结果是:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 } { "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 } { "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }
2.$project阶段
Case 4
假设存在一个 students 集合,其数据结构如下:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 } { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 } { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
现在的需求是统计每个学生的 平常的测验分数总和、实验分数总和、期末其中分数总和。
db.students.aggregate([ { $project: { quizTotal: { $sum: "$quizzes"}, labTotal: { $sum: "$labs" }, examTotal: { $sum: [ "$final", "$midterm" ] } } } ])
其查询输出结果如下:
{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 } { "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 } { "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }
参考文献:
https://www.runoob.com/mongodb/mongodb-aggregate.html
https://docs.mongodb.com/manual/reference/operator/aggregation/sum/index.html
总结
以上所述是小编给大家介绍的MongoDB 中聚合统计计算--$SUM表达式,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。