测试环境:
postgres=# select version(); version --------------------------------------------------------------------------------------------------------- PostgreSQL 11.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39), 64-bit (1 row) postgres=#
数据准备:
$ pgbench -i -s 10
postgres=# \d List of relations Schema | Name | Type | Owner --------+------------------+-------+---------- public | pgbench_accounts | table | postgres public | pgbench_branches | table | postgres public | pgbench_history | table | postgres public | pgbench_tellers | table | postgres (4 rows) postgres=# select * from pgbench_accounts limit 1; aid | bid | abalance | filler -----+-----+----------+-------------------------------------------------------------------------------------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches limit 1; bid | bbalance | filler -----+----------+-------- 1 | 0 | (1 row) postgres=# select * from pgbench_history limit 1; tid | bid | aid | delta | mtime | filler -----+-----+-----+-------+-------+-------- (0 rows) postgres=# select * from pgbench_tellers limit 1; tid | bid | tbalance | filler -----+-----+----------+-------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches; bid | bbalance | filler -----+----------+-------- 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 6 | 0 | 7 | 0 | 8 | 0 | 9 | 0 | 10 | 0 | (10 rows) postgres=# update pgbench_branches set bbalance=4500000 where bid in (4,7); UPDATE 2 postgres=#
IN语句
查询要求:找出那些余额(balance)大于0的每个分支(branch)在表在pgbench_accounts中有多少个账户
1.使用IN子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
2.使用ANY子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid = ANY ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
3.使用EXISTS子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid;
4.使用INNER JOIN
SELECT count( aid ),a.bid FROM pgbench_accounts a JOIN pgbench_branches b ON a.bid = b.bid WHERE b.bbalance > 0 GROUP BY a.bid;
在完成这个查询要求的时候,有人可能会假设exists和inner join性能可能会更好,因为他们可以使用两表连接的逻辑和优化。而IN和ANY子句需要使用子查询。
然而,PostgreSQL(10版本之后)已经智能的足以对上面四种写法产生相同的执行计划!
所有上面的写法都会产生相同的执行计划:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=23327.73..23330.26 rows=10 width=12) (actual time=97.199..99.014 rows=2 loops=1) Group Key: a.bid -> Gather Merge (cost=23327.73..23330.06 rows=20 width=12) (actual time=97.191..99.006 rows=6 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22327.70..22327.73 rows=10 width=12) (actual time=93.762..93.766 rows=2 loops=3) Sort Key: a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22327.44..22327.54 rows=10 width=12) (actual time=93.723..93.727 rows=2 loops=3) Group Key: a.bid -> Hash Join (cost=1.14..22119.10 rows=41667 width=8) (actual time=24.024..83.263 rows=66667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.023..43.151 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.027..0.028 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.018..0.020 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.342 ms Execution Time: 99.164 ms (22 rows)
那么,我们是否可以得出这样的结论:我们可以随意地编写查询,而PostgreSQL的智能将会处理其余的问题"htmlcode">
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid NOT IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
执行计划:
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=23645.42..23647.95 rows=10 width=12) (actual time=128.606..130.502 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=23645.42..23647.75 rows=20 width=12) (actual time=128.598..130.490 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22645.39..22645.42 rows=10 width=12) (actual time=124.960..124.963 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22645.13..22645.23 rows=10 width=12) (actual time=124.917..124.920 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=1.13..21603.46 rows=208333 width=8) (actual time=0.078..83.134 rows=266667 loops=3) Filter: (NOT (hashed SubPlan 1)) Rows Removed by Filter: 66667 SubPlan 1 -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.020..0.021 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.310 ms Execution Time: 130.620 ms (21 rows) postgres=#
2.使用<>ALL
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid <> ALL ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
执行计划:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=259581.79..259584.32 rows=10 width=12) (actual time=418.220..419.913 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=259581.79..259584.12 rows=20 width=12) (actual time=418.212..419.902 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=258581.76..258581.79 rows=10 width=12) (actual time=413.906..413.909 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=258581.50..258581.60 rows=10 width=12) (actual time=413.872..413.875 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=0.00..257539.83 rows=208333 width=8) (actual time=0.054..367.244 rows=266667 loops=3) Filter: (SubPlan 1) Rows Removed by Filter: 66667 SubPlan 1 -> Materialize (cost=0.00..1.13 rows=1 width=4) (actual time=0.000..0.001 rows=2 loops=1000000) -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.001..0.001 rows=2 loops=337880) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.218 ms Execution Time: 420.035 ms (22 rows) postgres=#
3.使用NOT EXISTS
SELECT count( aid ),bid FROM pgbench_accounts WHERE NOT EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid;
执行计划:
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=152.024..153.931 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=152.014..153.917 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=147.782..147.786 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=147.732..147.737 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.134..101.884 rows=266667 loops=3) Hash Cond: (pgbench_accounts.bid = pgbench_branches.bid) -> Parallel Seq Scan on pgbench_accounts (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.032..45.174 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.036..0.037 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.025..0.027 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.322 ms Execution Time: 154.040 ms (22 rows) postgres=#
4.使用LEFT JOIN和IS NULL
SELECT count( aid ),a.bid FROM pgbench_accounts a LEFT JOIN pgbench_branches b ON a.bid = b.bid AND b.bbalance > 0 WHERE b.bid IS NULL GROUP BY a.bid;
执行计划:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=145.298..147.096 rows=8 loops=1) Group Key: a.bid -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=145.288..147.083 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=141.883..141.887 rows=8 loops=3) Sort Key: a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=141.842..141.847 rows=8 loops=3) Group Key: a.bid -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.087..99.535 rows=266667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.025..44.337 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.026..0.027 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.019..0.020 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.231 ms Execution Time: 147.180 ms (22 rows) postgres=#
NOT IN 和 <> ALL生成执行计划都包含了一个子查询。他们是各自独立的。
而NOT EXISTS和LEFT JOIN生成了相同的执行计划。
这些hash连接(或hash anti join)是完成查询要求的最灵活的方式。这也是推荐exists或join的原因。因此,推荐使用exists或join的经验法则是有效的。
但是,我们继续往下看! 即使有了子查询执行计划,NOT IN子句的执行时间也会更好"htmlcode">
CREATE TABLE t1 AS SELECT * FROM generate_series(0, 500000) id; CREATE TABLE t2 AS SELECT (random() * 4000000)::integer id FROM generate_series(0, 4000000); ANALYZE t1; ANALYZE t2; EXPLAIN SELECT id FROM t1 WHERE id NOT IN (SELECT id FROM t2);
执行计划:
QUERY PLAN -------------------------------------------------------------------------------- Gather (cost=1000.00..15195064853.01 rows=250000 width=4) Workers Planned: 1 -> Parallel Seq Scan on t1 (cost=0.00..15195038853.01 rows=147059 width=4) Filter: (NOT (SubPlan 1)) SubPlan 1 -> Materialize (cost=0.00..93326.01 rows=4000001 width=4) -> Seq Scan on t2 (cost=0.00..57700.01 rows=4000001 width=4) (7 rows) postgres=#
这里,执行计划将子查询进行了物化。代价评估变成了15195038853.01。(PostgreSQL的默认设置,如果t2表的行低于100k,会将子查询进行hash)。这样就会严重影响性能。因此,对于那种子查询返回的行数很少的场景,IN子句可以起到很好的作用。
其它注意点
有的!在我们用不同的方式写查询的时候,可能有数据类型的转换。
比如,语句:
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen = ANY(ARRAY['M', 'F']);
就会发生隐式的类型转换:
Seq Scan on emp (cost=0.00..1.04 rows=2 width=43) (actual time=0.023..0.026 rows=3 loops=1) Filter: ((gen)::text = ANY ('{M,F}'::text[]))
这里的(gen)::text就发生了类型转换。如果在大表上,这种类型转换的代价会很高,因此,PostgreSQL对IN子句做了更好的处理。
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen IN ('M','F'); Seq Scan on emp (cost=0.00..1.04 rows=3 width=43) (actual time=0.030..0.034 rows=3 loops=1) Filter: (gen = ANY ('{M,F}'::bpchar[]))
将IN子句转换成了ANY子句,没有对gen列进行类型转换。而是将M\F转成了bpchar(内部等价于char)
总结
简单来说,exists和直接join表通常比较好。
很多情况下,PostgreSQL将IN子句换成被hash的子计划。在一些特殊场景下,IN可以获得更好的执行计划。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?