背景
统计某个指标,指标按照月进行累加,注意需要按省份和年份进行分组。
方法一、使用自关联
-- with 按月统计得到中间结果 WITH yms AS (SELECT regionid,SUM(getnum) AS getnum,SUM(dealnum) AS dealnum,to_char(qndate,'yyyy-MM') AS yearmonth FROM t_queuenumber GROUP BY regionid,to_char(qndate,'yyyy-MM') ORDER BY regionid,yearmonth)-- 查用子查询解决。 SELECT s1.regionid,s1.yearmonth, getnum,dealnum, (SELECT SUM(getnum) FROM yms s2 WHERE s2.regionid = s1.regionid AND s2.yearmonth <= s1.yearmonth AND SUBSTRING(s1.yearmonth,0,5) = SUBSTRING(s2.yearmonth,0,5) ) AS getaccumulatednum, (SELECT SUM(dealnum) FROM yms s2 WHERE s2.regionid = s1.regionid AND s2.yearmonth <= s1.yearmonth AND SUBSTRING(s1.yearmonth,0,5) = SUBSTRING(s2.yearmonth,0,5) ) AS accumulatednum FROM yms s1;
查询的结果如下:
方法二、使用窗口函数
更多关于窗口函数的用法,可以参考以前的文章。窗口函数十分适合这样的场景:
WITH yms AS (SELECT regionid,SUM(getnum) AS getnum,SUM(dealnum) AS dealnum,to_char(qndate,'yyyy-MM') AS yearmonth FROM t_queuenumber GROUP BY regionid,to_char(qndate,'yyyy-MM') ORDER BY regionid,yearmonth) -- 窗口函数的使用 SELECT regionid,yearmonth, SUM(getnum) OVER(PARTITION BY regionid,SUBSTRING(yearmonth,0,5) ORDER BY yearmonth) AS getaccumulatednum, SUM(dealnum) OVER(PARTITION BY regionid ,SUBSTRING(yearmonth,0,5) ORDER BY yearmonth) AS dealaccumulatednum FROM yms;
后记
可以使用子查询、可以使用窗口函数完成上面业务场景。
补充:PostgreSQL实现按秒按分按时按日按周按月按年统计数据
提取时间(年月日时分秒):
import datetime from dateutil.relativedelta import relativedelta today = str(datetime.datetime.now()) print(today) print(today[:4], today[:7], today[:10],today[:13]) print("************分隔符***************") yesterday = (datetime.datetime.now() + datetime.timedelta(days=-1)).strftime("%Y-%m-%d %H:%M:%S") yesterday2 = (datetime.datetime.now() + datetime.timedelta(days=-2)).strftime("%Y-%m-%d %H:%M:%S") nextmonths = str(datetime.date.today() - relativedelta(months=-1))[:7] lastmonths = str(datetime.date.today() - relativedelta(months=+1))[:7] lastyears = str(datetime.date.today() - relativedelta(years=+1))[:4] nextyears = str(datetime.date.today() - relativedelta(years=-1))[:4] print(yesterday) print(yesterday2) print(nextmonths) print(lastmonths) print(lastyears) print(nextyears)
结果:
2020-03-05 13:49:59.982555 2020 2020-03 2020-03-05 2020-03-05 13 ************分隔符*************** 2020-03-04 13:49:59 2020-03-03 13:49:59 2020-04 2020-02 2019 2021
昨日每时:
select s.acceptDate, s.data_num from (select to_char(acceptDate, 'yyyy-mm-dd hh24') || '点' as acceptDate, count(1) as data_num from table_name t where t.acceptDate >= to_date('20190506', 'yyyymmdd') and t.acceptDate < to_date('20190507', 'yyyymmdd') and organization_ = 'abcdefghijklmnopqrstuvwxyz' group by to_char(acceptDate, 'yyyy-mm-dd hh24') || '点') s
本月每天:
select s.acceptDate, s.data_num from (select to_char(acceptDate, 'yyyy-mm-dd') as acceptDate, count(1) as data_num from table_name t where t.acceptDate >= to_date('201905', 'yyyymm') and t.acceptDate < to_date('201906', 'yyyymm') and organization_ = 'abcdefghijklmnopqrstuvwxyz' group by to_char(acceptDate, 'yyyy-mm-dd') ) s
本年每月:
select s.acceptDate, s.data_num from (select to_char(acceptDate, 'yyyy-mm') as acceptDate, count(1) as data_num from table_name t where t.acceptDate >= to_date('2019', 'yyyy') and t.acceptDate < to_date('2020', 'yyyy') and organization_ = 'abcdefghijklmnopqrstuvwxyz' group by to_char(acceptDate, 'yyyy-mm') ) s
2月-7月中每月的人数统计:
sql = """SELECT to_char(rujiaoriqi, 'yyyy-mm') as month,count(1) num FROM jibenxx where rujiaoriqi is not null and zhongzhiriqi is null AND to_char(rujiaoriqi,'yyyy-mm-dd')>='2020-02-01' GROUP BY to_char(rujiaoriqi, 'yyyy-mm') order by to_char(rujiaoriqi, 'yyyy-mm') """
统计每年:
select s.acceptDate, s.data_num from (select to_char(acceptDate, 'yyyy') as acceptDate, count(1) as data_num from table_name t where t.acceptDate >= to_date('2015', 'yyyy') and t.acceptDate < to_date('2021', 'yyyy') and organization_ = 'abcdefghijklmnopqrstuvwxyz' group by to_char(acceptDate, 'yyyy') ) s
里面时间参数进行传参即可。
补充:
统计今天(查询当天或者指定某天数量)
select count(1) FROM "shequjz_jibenxx" where to_char(zhongzhiriqi,'yyyy-mm-dd')='2019-11-11'
最近七天每天的数量:
select s.acceptDate, s.data_num from (select to_char(jiaozheng_jieshushijian, 'yyyy-mm-dd') as acceptDate, count(1) as data_num from shequjz_jibenxx t where t.jiaozheng_jieshushijian >= to_date('2020-11-06', 'yyyy-mm-dd') and t.jiaozheng_jieshushijian < to_date('2020-11-13', 'yyyy-mm-dd') group by to_char(jiaozheng_jieshushijian, 'yyyy-mm-dd') ) s ORDER BY acceptDate ASC
最近七天(1天、3天、7天、一个月、一年、1h、1min、60s)的数量(总量):
# 包括今天向前推6天的总量 select count(1) from shequjz_jibenxx where jiaozheng_jieshushijian between (SELECT current_timestamp - interval '7 day') and current_timestamp # 最近一天(昨天) SELECT current_timestamp - interval '1 day' # 最近三天 SELECT current_timestamp - interval '3 day' # 最近一周 SELECT current_timestamp - interval '7 day' # 最近一个月(当前时间向前推进一个月) SELECT current_timestamp - interval '1 month' # 最近一年(当前时间向前推进一年) SELECT current_timestamp - interval '1 year' # 最近一小时(当前时间向前推一小时) SELECT current_timestamp - interval '1 hour' # 最近一分钟(当前时间向前推一分钟) SELECT current_timestamp - interval '1 min' # 最近60秒(当前时间向前推60秒) SELECT current_timestamp - interval '60 second'
最近七天中每天的累计历史总量:
步骤:
1)先统计出近7天每天的数量
2)后统计出7天前的累计历史总量
3)再对第(1)步中获取的结果进行累计求和,使用cumsum()函数
4)最后在第(3)步结果的基础上,加上7天前的累计历史总量(也就是第2步的结果)
# 趋势 def getWeekTrends(self): try: database = DataBase() sql = """select s.zhongzhi_Date, s.data_num from (select to_char(jiaozheng_jieshushijian, 'yyyy-mm-dd') as zhongzhi_Date, count(1) as data_num from shequjz_jibenxx t where t.jiaozheng_jieshushijian >= to_date('{}', 'yyyy-mm-dd') and t.jiaozheng_jieshushijian < to_date('{}', 'yyyy-mm-dd') group by to_char(jiaozheng_jieshushijian, 'yyyy-mm-dd') ) s""".format(lastweek, today[:10]) res_df = database.queryData(sql, flag=True) sql_total = """select count(1) FROM "shequjz_jibenxx" where rujiaoriqi is not null and zhongzhiriqi is null and to_char(rujiaoriqi,'yyyy-mm-dd')<'{}'""".format(lastweek) res_total = database.queryData(sql_total, count=1, flag=False) #7131 res_df['cumsum'] = res_df['data_num'].cumsum() # 累计求和 res_df['cumsum'] = res_df['cumsum'] + res_total[0] res_df = res_df[['zhongzhi_date', 'cumsum']].to_dict(orient='records') res = {'code': 1, 'message': '数据获取成功', 'data': res_df} print(res) return res except Exception as e: error_info = '数据获取错误:{}'.format(e) logger.error(error_info) res = {'code': 0, 'message': error_info} return res {'code': 1, 'message': '数据获取成功', 'data': [ {'zhongzhi_date': '2020-11-13', 'cumsum': 7148}, {'zhongzhi_date': '2020-11-10', 'cumsum': 7161}, {'zhongzhi_date': '2020-11-11', 'cumsum': 7195}, {'zhongzhi_date': '2020-11-12', 'cumsum': 7210}, {'zhongzhi_date': '2020-11-09', 'cumsum': 7222}, {'zhongzhi_date': '2020-11-14', 'cumsum': 7229}, {'zhongzhi_date': '2020-11-15', 'cumsum': 7238}]}
postgresql按周统计数据
(实际统计的是 上周日到周六 7天的数据):
因为外国人的习惯是一周从周日开始,二我们中国人的习惯一周的开始是星期一,这里 -1 即将显示日期从周日变成了周一,但是内部统计的数量还是从 上周日到周六进行 统计的,改变的仅仅是显示星期一的时间。
提取当前星期几: 1
SELECT EXTRACT(DOW FROM CURRENT_DATE)
提取当前日期: 2020-11-16 00:00:00
SELECT CURRENT_DATE-(EXTRACT(DOW FROM CURRENT_DATE)-1||'day')::interval diffday;
按周统计数据一:
select to_char(jiaozheng_jieshushijian::DATE-(extract(dow from "jiaozheng_jieshushijian"::TIMESTAMP)-1||'day')::interval, 'YYYY-mm-dd') date_, count(1) from shequjz_jibenxx where jiaozheng_jieshushijian BETWEEN '2020-01-01' and '2020-11-16' GROUP BY date_ order by date_
其中date_为一周中的第一天即星期一
按周统计数据二:
SELECT to_char ( cda.jiaozheng_jieshushijian, 'yyyy ' ) || EXTRACT ( WEEK FROM cda.jiaozheng_jieshushijian ) :: INTEGER AS date_, count( cda.id ) AS count, cda.jiaozheng_jieshushijian AS times FROM shequjz_jibenxx AS cda WHERE 1 = 1 AND to_char ( cda.jiaozheng_jieshushijian, 'YYYY-MM-DD HH24:MI:SS' ) BETWEEN '2020-10-01 00:00:00' AND '2020-11-12 00:00:00' GROUP BY date_, times ORDER BY date_, times DESC
postgresql中比较日期的四种方法
select * from user_info where create_date >= '2020-11-01' and create_date <= '2020-11-16' select * from user_info where create_date between '2020-11-01' and '2020-11-16' select * from user_info where create_date >= '2020-11-01'::timestamp and create_date < '2020-11-16'::timestamp select * from user_info where create_date between to_date('2020-11-01','YYYY-MM-DD') and to_date('2020-11-16','YYYY-MM-DD')
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
PostgreSQL,按月累加
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?