一、迭代器Iterators

迭代器仅是一容器对象,它实现了迭代器协议。它有两个基本方法:

1)next方法
返回容器的下一个元素

2)__iter__方法
返回迭代器自身

迭代器可使用内建的iter方法创建,见例子:
复制代码 代码如下:
> i = iter('abc')
> i.next()
'a'
> i.next()
'b'
> i.next()
'c'
> i.next()
Traceback (most recent call last):
  File "<string>", line 1, in <string>
StopIteration:

class MyIterator(object):
  def __init__(self, step):
  self.step = step
  def next(self):
  """Returns the next element."""
  if self.step==0:
  raise StopIteration
  self.step-=1
  return self.step
  def __iter__(self):
  """Returns the iterator itself."""
  return self
for el in MyIterator(4):
  print el
--------------------

结果:
复制代码 代码如下:
3
2
1
0

二、生成器Generators

从Python2.2起,生成器提供了一种简洁的方式帮助返回列表元素的函数来完成简单和有效的代码。
它基于yield指令,允许停止函数并立即返回结果。

此函数保存其执行上下文,如果需要,可立即继续执行。

例如Fibonacci函数:
复制代码 代码如下:
def fibonacci():
  a,b=0,1
  while True:
  yield b
  a,b = b, a+b
fib=fibonacci()
print fib.next()
print fib.next()
print fib.next()
print [fib.next() for i in range(10)]
--------------------

结果:
复制代码 代码如下:
1
1
2
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

PEP Python Enhancement Proposal Python增强建议

tokenize模块
复制代码 代码如下:
> import tokenize
> reader = open('c:/temp/py1.py').next
> tokens=tokenize.generate_tokens(reader)
> tokens.next()
(1, 'class', (1, 0), (1, 5), 'class MyIterator(object):/n')
> tokens.next()
(1, 'MyIterator', (1, 6), (1, 16), 'class MyIterator(object):/n')
> tokens.next()
(51, '(', (1, 16), (1, 17), 'class MyIterator(object):/n')

例子:
复制代码 代码如下:
def power(values):
  for value in values:
  print 'powering %s' %value
  yield value
def adder(values):
  for value in values:
  print 'adding to %s' %value
  if value%2==0:
  yield value+3
  else:
  yield value+2
elements = [1,4,7,9,12,19]
res = adder(power(elements))
print res.next()
print res.next()
--------------------

结果:
复制代码 代码如下:
powering 1
adding to 1
3
powering 4
adding to 4
7

保持代码简单,而不是数据。
注意:宁可有大量简单的可迭代函数,也不要一个复杂的一次只计算出一个值的函数。

例子:
复制代码 代码如下:
def psychologist():
  print 'Please tell me your problems'
  while True:
  answer = (yield)
  if answer is not None:
  if answer.endswith('"Don't ask yourself too much questions")
  elif 'good' in answer:
  print "A that's good, go on"
  elif 'bad' in answer:
  print "Don't be so negative"
free = psychologist()
print free.next()
print free.send('I feel bad')
print free.send("Why I shouldn't ")
print free.send("ok then i should find what is good for me")
--------------------

结果:
复制代码 代码如下:
Please tell me your problems
None
Don't be so negative
None
Don't ask yourself too much questions
None
A that's good, go on
None

标签:
Python,迭代器,生成器

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“Python的迭代器和生成器使用实例”

暂无“Python的迭代器和生成器使用实例”评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。