本文实例讲述了Python实现PS图像调整黑白效果。分享给大家供大家参考,具体如下:
这里用Python 实现 PS 里的图像调整–黑白,PS 里的黑白并不是简单粗暴的将图像转为灰度图,而是做了非常精细的处理,具体的算法原理和效果图可以参考附录说明。
比起之前的程序,对代码进行了优化,完全用矩阵运算代替了 for 循环,运算效率提升了很多。具体的代码如下:
import numpy as np import matplotlib.pyplot as plt from skimage import io file_name='D:/Image Processing/PS Algorithm/4.jpg'; img=io.imread(file_name) img = img * 1.0 Color_ratio = np.zeros(6) Color_ratio[0]=0.4; # Red Color_ratio[1]=0.6; # Yellow Color_ratio[2]=0.4; # Green Color_ratio[3]=0.6; # Cyan Color_ratio[4]=0.2; # Blue Color_ratio[5]=0.8; # Magenta max_val = img.max(axis = 2) min_val = img.min(axis = 2) sum_val = img.sum(axis = 2) mid_val = sum_val - max_val - min_val mask_r = (img[:, :, 0] - min_val - 0.01) > 0 mask_r = 1 - mask_r mask_g = (img[:, :, 1] - min_val - 0.01) > 0 mask_g = 1 - mask_g mask_b = (img[:, :, 2] - min_val - 0.01) > 0 mask_b = 1 - mask_b ratio_max_mid = mask_r * Color_ratio[3] + mask_g * Color_ratio[5] + mask_b * Color_ratio[1] mask_r = (img[:, :, 0] - max_val + 0.01) < 0 mask_r = 1 - mask_r mask_g = (img[:, :, 1] - max_val + 0.01) < 0 mask_g = 1 - mask_g mask_b = (img[:, :, 2] - max_val + 0.01) < 0 mask_b = 1 - mask_b ratio_max= mask_r * Color_ratio[4] + mask_g * Color_ratio[0] + mask_b * Color_ratio[2] I_out = max_val * 1.0 I_out = (max_val-mid_val)*ratio_max + (mid_val-min_val)*ratio_max_mid + min_val plt.figure() plt.imshow(img/255.0) plt.axis('off') plt.figure(2) plt.imshow(I_out/255.0, plt.cm.gray) plt.axis('off') plt.show()
附录:PS 图像调整算法——黑白
黑白调整
Photoshop CS的图像黑白调整功能,是通过对红、黄、绿、青、蓝和洋红等6种颜色的比例调节来完成的。能更精细地将彩色图片转换为高质量的黑白照片。
Photoshop CS图像黑白调整功能的计算公式为:
gray= (max - mid) * ratio_max + (mid - min) * ratio_max_mid + min
公式中:gray为像素灰度值,max、mid和min分别为图像像素R、G、B分量颜色的最大值、中间值和最小值,ratio_max为max所代表的分量颜色(单色)比率,ratio_max_mid则为max与mid两种分量颜色所形成的复色比率。
默认的单色及复色比率为:
Color_Ratio(1)=0.4; %%%% Red
Color_Ratio(2)=0.6; %%%% Yellow
Color_Ratio(3)=0.4; %%%% Green
Color_Ratio(4)=0.6; %%%% Cyan
Color_Ratio(5)=0.2; %%%% Blue
Color_Ratio(6)=0.8; %%%% Magenta
Program:
%%%%% 程序实现图像的黑白调整功能 clc; clear all; close all; Image=imread('9.jpg'); Image=double(Image); R=Image(:,:,1); G=Image(:,:,2); B=Image(:,:,3); [row, col] = size(R); Gray_img(1:row,1:col)=0; Sum_rgb=R+G+B; %%%% 各种颜色的默认比率 Color_Ratio(1:6)=0; Color_Ratio(1)=0.4; %%%% Red Color_Ratio(2)=0.6; %%%% Yellow Color_Ratio(3)=0.4; %%%% Green Color_Ratio(4)=0.6; %%%% Cyan Color_Ratio(5)=0.2; %%%% Blue Color_Ratio(6)=0.8; %%%% Magenta for i=1:row for j=1:col r=R(i,j); g=G(i,j); b=B(i,j); Max_value=max(r,max(g,b)); Min_value=min(r,min(g,b)); Mid_value=Sum_rgb(i,j)-Max_value-Min_value; if(Min_value==r) Index=0; elseif(Min_value==g) Index=2; else Index=4; end ratio_max_mid=Color_Ratio(mod(Index+3,6)+1); if(Max_value==r) Index=1; elseif(Max_value==g) Index=3; else Index=5; end ratio_max=Color_Ratio(Index); Temp=(Max_value-Mid_value)*ratio_max+(Mid_value-Min_value)... *ratio_max_mid+Min_value; Gray_img(i,j)=(Max_value-Mid_value)*ratio_max+(Mid_value-Min_value)... *ratio_max_mid+Min_value; end end imshow(Image/255); figure, imshow(Gray_img/255);
本例Python运行结果如下:
原图:
运行效果图:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。