生成器,可迭代对象,迭代器之间究竟是什么关系?
用一幅图来概括:
1.生成器
定义生成器
方式一:
//区别于列表生成式 gen = [x*x for x in range(5)] gen = (x*x for x in range(5)) print(gen) //Out:<generator object <genexpr> at 0x00000258DC5CD8E0>
方式二:
def fib(): prev, curr = 0, 1 while True: yield curr prev, curr = curr, curr + prev f = fib() print(f) //Out:<generator object fib at 0x00000258DC5CD150>
定义成功后,我们可以利用next()访问生成器下一个元素
print(next(gen)) //0 print(next(gen)) //1 ... print(next(gen)) //16 print(next(gen)) //StopIteration
但一般用for循环遍历
for n in gen: print(n) //0 1 4 9 16
2.迭代器
任何实现了__iter__和__next__()方法的对象都是迭代器。__iter__返回迭代器自身,__next__返回容器中的下一个值。所以生成器是特殊的迭代器,她内部具有这两种方法。
一个自定义的迭代器如下:
class Fib: def __init__(self): self.prev = 0 self.curr = 1 def __iter__(self): return self def __next__(self): value = self.curr self.curr += self.prev self.prev = value return value f = Fib() count = 1 for n in f: print(n) count = count+1 if count>=10: break //Out:1 1 2 3 5 8 13 21 34
3.可迭代对象
像list,tuple,set,dict,str等可以直接作用于for循环的对象,称为可迭代对象。可迭代对象实现了__iter__方法,用于返回迭代器。
demo = [1,2,3,4] print(isinstance(demo, Iterable)) //True iter_object = iter(demo) print(iter_object) //<list_iterator object at 0x00000258DC5EF748>
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“python生成器,可迭代对象,迭代器区别和联系”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。