生成器,可迭代对象,迭代器之间究竟是什么关系?

用一幅图来概括:

python生成器,可迭代对象,迭代器区别和联系

1.生成器

定义生成器

方式一:

//区别于列表生成式 gen = [x*x for x in range(5)]
gen = (x*x for x in range(5)) 
print(gen) //Out:<generator object <genexpr> at 0x00000258DC5CD8E0>

方式二:

def fib():
  prev, curr = 0, 1
  while True:
    yield curr
    prev, curr = curr, curr + prev
f = fib()
print(f) //Out:<generator object fib at 0x00000258DC5CD150>

定义成功后,我们可以利用next()访问生成器下一个元素

print(next(gen)) //0
print(next(gen)) //1
...
print(next(gen)) //16
print(next(gen)) //StopIteration

但一般用for循环遍历

for n in gen:
  print(n) //0 1 4  9 16

2.迭代器

任何实现了__iter__和__next__()方法的对象都是迭代器。__iter__返回迭代器自身,__next__返回容器中的下一个值。所以生成器是特殊的迭代器,她内部具有这两种方法。

一个自定义的迭代器如下:

class Fib:
  def __init__(self):
    self.prev = 0
    self.curr = 1
 
  def __iter__(self):
    return self
 
  def __next__(self):
    value = self.curr
    self.curr += self.prev
    self.prev = value
    return value
f = Fib() 
count = 1 
for n in f:
  print(n)
  count = count+1
  if count>=10:
    break
//Out:1 1 2 3 5 8 13 21 34

3.可迭代对象

像list,tuple,set,dict,str等可以直接作用于for循环的对象,称为可迭代对象。可迭代对象实现了__iter__方法,用于返回迭代器。

demo = [1,2,3,4]
print(isinstance(demo, Iterable)) //True
iter_object = iter(demo)
print(iter_object) //<list_iterator object at 0x00000258DC5EF748>

 

标签:
python,生成器,可迭代对象,迭代器

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。