本文实例讲述了Python自定义线程池实现方法。分享给大家供大家参考,具体如下:
关于python的多线程,由与GIL的存在被广大群主所诟病,说python的多线程不是真正的多线程。但多线程处理IO密集的任务效率还是可以杠杠的。
我实现的这个线程池其实是根据银角的思路来实现的。
主要思路:
任务获取和执行:
1、任务加入队列,等待线程来获取并执行。
2、按需生成线程,每个线程循环取任务。
线程销毁:
1、获取任务是终止符时,线程停止。
2、线程池close()时,向任务队列加入和已生成线程等量的终止符。
3、线程池terminate()时,设置线程下次任务取到为终止符。
流程概要设计:
详细代码:
import threading import contextlib from Queue import Queue import time class ThreadPool(object): def __init__(self, max_num): self.StopEvent = 0#线程任务终止符,当线程从队列获取到StopEvent时,代表此线程可以销毁。可设置为任意与任务有区别的值。 self.q = Queue() self.max_num = max_num #最大线程数 self.terminal = False #是否设置线程池强制终止 self.created_list = [] #已创建线程的线程列表 self.free_list = [] #空闲线程的线程列表 self.Deamon=False #线程是否是后台线程 def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: :return: 如果线程池已经终止,则返回True否则None """ if len(self.free_list) == 0 and len(self.created_list) < self.max_num: self.create_thread() task = (func, args, callback,) self.q.put(task) def create_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.setDaemon(self.Deamon) t.start() self.created_list.append(t)#将当前线程加入已创建线程列表created_list def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.current_thread() #获取当前线程对象· event = self.q.get() #从任务队列获取任务 while event != self.StopEvent: #判断获取到的任务是否是终止符 func, arguments, callback = event#从任务中获取函数名、参数、和回调函数名 try: result = func(*arguments) func_excute_status =True#func执行成功状态 except Exception as e: func_excute_status = False result =None print '函数执行产生错误', e#打印错误信息 if func_excute_status:#func执行成功后才能执行回调函数 if callback is not None:#判断回调函数是否是空的 try: callback(result) except Exception as e: print '回调函数执行产生错误', e # 打印错误信息 with self.worker_state(self.free_list,current_thread): #执行完一次任务后,将线程加入空闲列表。然后继续去取任务,如果取到任务就将线程从空闲列表移除 if self.terminal:#判断线程池终止命令,如果需要终止,则使下次取到的任务为StopEvent。 event = self.StopEvent else: #否则继续获取任务 event = self.q.get() # 当线程等待任务时,q.get()方法阻塞住线程,使其持续等待 else:#若线程取到的任务是终止符,就销毁线程 #将当前线程从已创建线程列表created_list移除 self.created_list.remove(current_thread) def close(self): """ 执行完所有的任务后,所有线程停止 """ full_size = len(self.created_list)#按已创建的线程数量往线程队列加入终止符。 while full_size: self.q.put(self.StopEvent) full_size -= 1 def terminate(self): """ 无论是否还有任务,终止线程 """ self.terminal = True while self.created_list: self.q.put(self.StopEvent) self.q.queue.clear()#清空任务队列 def join(self): """ 阻塞线程池上下文,使所有线程执行完后才能继续 """ for t in self.created_list: t.join() @contextlib.contextmanager#上下文处理器,使其可以使用with语句修饰 def worker_state(self, state_list, worker_thread): """ 用于记录线程中正在等待的线程数 """ state_list.append(worker_thread) try: yield finally: state_list.remove(worker_thread) if __name__ == '__main__': def Foo(arg): return arg # time.sleep(0.1) def Bar(res): print res pool=ThreadPool(5) # pool.Deamon=True#需在pool.run之前设置 for i in range(1000): pool.run(func=Foo,args=(i,),callback=Bar) pool.close() pool.join() # pool.terminate() print "任务队列里任务数%s" %pool.q.qsize() print "当前存活子线程数量:%d" % threading.activeCount() print "当前线程创建列表:%s" %pool.created_list print "当前线程创建列表:%s" %pool.free_list
关于上下文处理:
来个简单例子说明:
下面的代码手动自定义了一个myopen方法,模拟我们常见的with open() as f:语句。具体的contextlib模块使用,会单独开章来将。
# coding:utf-8 import contextlib @contextlib.contextmanager#定义该函数支持上下文with语句 def myopen(filename,mode): f=open(filename,mode) try: yield f.readlines()#正常执行返回f.readlines() except Exception as e: print e finally: f.close()#最后在with代码快执行完毕后返回执行finally下的f.close()实现关闭文件 if __name__ == '__main__': with myopen(r'c:\ip1.txt','r') as f: for line in f: print line
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
Python,自定义线程池
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。