本文实例讲述了Python找出序列中出现次数最多的元素。分享给大家供大家参考,具体如下:

问题:找出一个元素序列中出现次数最多的元素是什么

解决方案:collections模块中的Counter类正是为此类问题所设计的。它的一个非常方便的most_common()方法直接告诉你答案。

# Determine the most common words in a list
words = [
  'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
  'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
  'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
  'my', 'eyes', "you're", 'under'
]
from collections import Counter
word_counts = Counter(words)
top_three = word_counts.most_common(3)
print(top_three)
# outputs [('eyes', 8), ('the', 5), ('look', 4)]
# Example of merging in more words
morewords = ['why','are','you','not','looking','in','my','eyes']
word_counts.update(morewords) #使用update()增加计数
print(word_counts.most_common(3))

> ================================ RESTART ================================
>
[('eyes', 8), ('the', 5), ('look', 4)]
[('eyes', 9), ('the', 5), ('my', 4)]
>

在底层实现中,Counter是一个字典,在元素和它们出现的次数间做了映射。

> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
> word_counts.most_common(3) #top_three
[('eyes', 9), ('the', 5), ('my', 4)]
> word_counts['not']
2
> word_counts['eyes']
9
> word_counts['eyes']+1
10
> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
> word_counts['eyes']=word_counts['eyes']+1 #手动增加元素计数
> word_counts
Counter({'eyes': 10, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
>

增加元素出现次数可以通过手动进行增加,也可以借助update()方法;

另外,Counter对象另一个特性是它们可以同各种数学运算操作结合起来使用:

> a=Counter(words)
> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'my': 3, 'into': 3, 'around': 2, 'under': 1, "you're": 1, 'not': 1, "don't": 1})
> b=Counter(morewords)
> b
Counter({'not': 1, 'my': 1, 'in': 1, 'you': 1, 'looking': 1, 'are': 1, 'eyes': 1, 'why': 1})
> c=a+b
> c
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'in': 1, 'why': 1})
> # substract counts
> d=a-b
> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2, 'under': 1, "you're": 1, "don't": 1})
>

当面对任何需要对数据制表或计数的问题时,Counter对象都是你手边的得力工具。比起利用字典自己手写算法,更应采用该方式完成任务。

(代码摘自《Python Cookbook》)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,cookbook,数据结构与算法,找出,序列,出现次数最多,元素,算法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。