Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。
先看两个代码片小例子:
例子1:
In [2]: arr =np.empty((8,4)) In [3]: arr Out[3]: array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) In [4]: arr[1] = 1 In [5]: arr Out[5]: array([[ 0., 0., 0., 0.], [ 1., 1., 1., 1.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]])
例子2:
In [6]: arr1 =np.empty(2) In [8]: arr1 Out[8]:array([ 7.74860419e-304, 7.74860419e-304]) In [9]: arr1 = 0 In [10]: arr1 Out[10]: 0
这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。
例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,
具体方法实现如下:
In [11]: arr1 =np.empty(2) In [12]: arr1 Out[12]: array([0., 0.]) In [13]: arr1[:] Out[13]: array([0., 0.]) In [14]: arr1[:] =0 In [15]: arr1 Out[15]: array([0., 0.])
看起来似乎蛮简单,但是不做一下稍微深入一点的分析,理解起来确实是还有一点点难度。
以上这篇对numpy中数组元素的统一赋值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
numpy,数组赋值
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“对numpy中数组元素的统一赋值实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。