首先将一个字典转化为DataFrame,然后以DataFrame中的列进行频次统计。

代码如下:

import pandas as pd
a={'one':['A','A','B','C','C','A','B','B','A','A'],
 'tao':['B','B','C','C','A','A','C','B','C','A'],
 'three':['C','B','A','A','B','B','B','A','C','D']}
b=pd.DataFrame(a)
b.describe()

b是转换后DataFrame,显示如表格:

将字典转换为DataFrame并进行频次统计的方法

 one tao three
0 A B C
1 A B B
2 B C A
3 C C A
4 C A B
5 A A B
6 B C B
7 B B A
8 A C C
9 A A D

频次统计如表格:

将字典转换为DataFrame并进行频次统计的方法

 one tao three
count 10 10 10
unique 3 3 4
top A C B
freq 5 4 4

其中count是总共变量数量,unique是每列有几个变量,top是频次最高的那个变量,freq是频次最高变量出现的频次。

以上这篇将字典转换为DataFrame并进行频次统计的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
字典转换为DataFrame

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。