1.apply()

当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [117]: frame
Out[117]: 
        b     d     e
Utah  -0.029638 1.081563 1.280300
Ohio  0.647747 0.831136 -1.549481
Texas  0.513416 -0.884417 0.195343
Oregon -0.485454 -0.477388 -0.309548
In [118]: f = lambda x: x.max() - x.min()
In [119]: frame.apply(f)
Out[119]: 
b  1.133201
d  1.965980
e  2.829781
dtype: float64

但是因为大多数的列表统计方程 (比如 sum 和 mean)是DataFrame的函数,所以apply很多时候不是必须的

2.applymap()

如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示

In [120]: format = lambda x: '%.2f' % x
In [121]: frame.applymap(format)
Out[121]: 
      b   d   e
Utah  -0.03  1.08  1.28
Ohio   0.65  0.83 -1.55
Texas  0.51 -0.88  0.20
Oregon -0.49 -0.48 -0.31

3.map()

map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示

In [122]: frame['e'].map(format)
Out[122]: 
Utah    1.28
Ohio   -1.55
Texas   0.20
Oregon  -0.31
Name: e, dtype: object

总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作。

以上这篇浅谈Pandas中map, applymap and apply的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pandas,apply,map

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“浅谈Pandas中map, applymap and apply的区别”

暂无“浅谈Pandas中map, applymap and apply的区别”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。