还是用图说话
A文件:
比如,我想筛选出“设计井别”、“投产井别”、“目前井别”三列数据都为11的数据,结果如下:
当然,这里的筛选条件可以根据用户需要自由调整,代码如下:
# -*- coding: utf-8 -*- """ Created on Wed Nov 29 10:46:31 2017 @author: wq """ import pandas as pd #input.csv是那个大文件,有很多很多行 df1 = pd.read_csv(u'input.csv', encoding='gbk') #加encoding=‘gbk'是因为文件中存在中文,不加可能出现乱码 #这里的筛选条件可以根据用户需要进行修改 outfile = df1[(df1[u'设计井别']=='11') & (df1[u'投产井别']=='11') &(df1[u'目前井别']=='11')] outfile.to_csv('outfile.csv', index=False, encoding='gbk')
有时我们也会有相反的一个需求,需要删除“设计井别”、“投产井别”、“目前井别”三列数据都为11的那些行,效果如下:
代码如下:
#input.csv是那个大文件,有很多很多行 df1 = pd.read_csv(u'input.csv', encoding='gbk') df2 = pd.read_csv(u'outfile.csv', encoding='gbk') #加encoding=‘gbk'是因为文件中存在中文,不加可能出现乱码 index = ~df1[u'汉字井号'].isin(df2[u'汉字井号']) df4 = df1[index] df4.to_csv('outfile1.csv', index=False, encoding='gbk')
以上这篇pandas按若干个列的组合条件筛选数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas按条件筛选
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“pandas按若干个列的组合条件筛选数据的方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。