现在要解决的问题如下:
我们有一个数据的表
第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系:
我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个
好了,我给的解决方法如下:
#!/bin/python #-*-coding:UTF-8-*- import pandas as pd import numpy as np dfidspec = pd.read_table("one.txt")#这个是对应关系的文件 dfmgs = pd.read_table("two.txt",header = None)#这个是我们数据的表 def getlistnum(li):#这个函数就是要对列表的每个元素进行计数 set1 = set(li) dict1 = {} for item in set1: dict1.update({item:li.count(item)}) return dict1 bigdict = dict(zip(dfidspec['ID'],dfidspec['class']))#获得一个关系的字典 dfmgs['indeo'] = 'a'#在读取的数据框新建一个字符列 for i in range(len(dfmgs.index)):#对每一行进行操作 spp = [bigdict[int(j)] for j in dfmgs.iloc[i, 6].split(',')]#对于第7列的格子中的每个数进行字典取值 sppnum = getlistnum(spp) dfmgs.iloc[i, 7] = str(sppnum) dfmgs.to_csv("three.txt",sep = '\t',index = False)
这个就可以得到想要的结果了:
以上这篇pandas数据框,统计某列数据对应的个数方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas数据框
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“pandas数据框,统计某列数据对应的个数方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。