以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ---------------------特定列加减乘除-------------------------
print(food_info["Iron_(mg)"])
div_1000 = food_info["Iron_(mg)"] / 1000
add_100 = food_info["Iron_(mg)"] + 100
sub_100 = food_info["Iron_(mg)"] - 100
mult_2 = food_info["Iron_(mg)"]*2
# ---------------------某两列相乘---------------------------
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
# ----------------------把某一列除1000,再添加新列----------------------------
iron_grams = food_info["Iron_(mg)"] / 1000
food_info["Iron_(g)"] = iron_grams
#-------------------Score=2×(Protein_(g))"Protein_(g)"] * 2
weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
#----------------------------数据归一化-----------------------------------
max_calories = food_info["Energ_Kcal"].max()              #找列最大值
normalized_calories = food_info["Energ_Kcal"] / max_calories
normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat
# -------------------------------排序----------------------------------
food_info.sort_values("Sodium_(mg)", inplace=True)           #升序,inplace=True表示不从建DataFrame
print(food_info["Sodium_(mg)"])
food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)  #降序,ascending=False表示降序
print(food_info["Sodium_(mg)"])

以上这篇pandas数值计算与排序方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pandas,排序

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“pandas数值计算与排序方法”

暂无“pandas数值计算与排序方法”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。