注:以下代码是基于python3.5.0编写的
import pandas food_info = pandas.read_csv("food_info.csv") # ------------------选取数据样本的第一行-------------------- print(food_info.loc[0]) #------------------选取数据样本的3到6行---------------------- print(food_info.loc[3:6]) #------------------head选取数据样本的前几行------------------ print(food_info.head(2)) # ------------------选取数据样本的2,5,10行,两种方法----------- # print(food_info.loc[[2,5,10]]) #方法一 two_five_ten = [2,5,10] #方法二 print(food_info.loc[two_five_ten]) # ------------------选取数据样本的NDB_No列-------------------- # ndb_col = food_info["NDB_No"] #方法一 col_name = "NDB_No" #方法二 ndb_col = food_info[col_name] print(ndb_col) # ------------------选取数据样本的多列------------------- # zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]] columns = ["Zinc_(mg)", "Copper_(mg)"] zinc_copper = food_info[columns] print(zinc_copper) # ---------------------综合小例子---------------------------- col_names = food_info.columns.tolist() #把所有的行转化成list print(col_names) gram_columns = [] for c in col_names: #遍历col_names,找出所有以(g)结尾的位置 if c.endswith("(g)"): gram_columns.append(c) print(gram_columns) gram_df = food_info[gram_columns] #把所有以(g)结尾的列存放到gram_df print(gram_df.head(3))
以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas选取行列
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“基于pandas数据样本行列选取的方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。