本文实例为大家分享了python可视化动态CPU性能监控的具体代码,供大家参考,具体内容如下
打算开发web性能监控,以后会去学js,现在用matp来补救下,在官网有此类模板,花了一点时间修改了下,有兴趣的可以去官网看看。
基于matplotoilb和psutil,matplotoilb是有名的数据数据可视化工具,psutil是性能监控工具,所以你需要这两个环境,本文不多说环境的安装。
以下是代码:
#!/usr/bin/env python #-*-coding:utf-8 -*- import matplotlib.pyplot as plt import matplotlib.animation as animation import psutil def data_gen(t=0): #设置xy变量 x = 0 y = 1 while True: y = psutil.cpu_percent(interval=1) #获取cpu数值,1s获取一次。 x += 1 yield x,y def init(): ax.set_xlim(0, 10) #起始x 1-10 ax.set_ylim(0, 100) #设置y相当于0%-100% del xdata[:] del ydata[:] line.set_data(xdata, ydata) return line, fig, ax = plt.subplots() line, = ax.plot([], [], lw=2) #线像素比 ax.grid() xdata, ydata = [], [] def run(data): # update the data t, y = data xdata.append(t) ydata.append(y) xmin, xmax = ax.get_xlim() if t >= xmax: #表格随数据移动 ax.set_xlim(xmin+10, xmax+10) ax.figure.canvas.draw() line.set_data(xdata, ydata) return line, ani = animation.FuncAnimation(fig, run, data_gen, blit=False, interval=10, repeat=False, init_func=init) plt.show()
下面是效果图,还有很多地方不完善,以后会花点时间完成。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“python实现可视化动态CPU性能监控”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。