本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数、Kendall Tau相关系数和spearman秩相关)。
> import numpy as np > import pandas as pd > df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random.randint(1, 100, 10), 'C':np.random.randint(1, 100, 10)}) > df A B C 0 5 91 3 1 90 15 66 2 93 27 3 3 70 44 66 4 27 14 10 5 35 46 20 6 33 14 69 7 12 41 15 8 28 62 47 9 15 92 77 > df.corr() # pearson相关系数 A B C A 1.000000 -0.560009 0.162105 B -0.560009 1.000000 0.014687 C 0.162105 0.014687 1.000000 > df.corr('kendall') # Kendall Tau相关系数 A B C A 1.000000 -0.314627 0.113666 B -0.314627 1.000000 0.045980 C 0.113666 0.045980 1.000000 > df.corr('spearman') # spearman秩相关 A B C A 1.000000 -0.419455 0.128051 B -0.419455 1.000000 0.067279 C 0.128051 0.067279 1.000000
以上这篇Python+pandas计算数据相关系数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,相关系数
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“Python+pandas计算数据相关系数的实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。