本文实例讲述了Python实现的简单排列组合算法。分享给大家供大家参考,具体如下:

1.python语言简单、方便,其内部可以快速实现排列组合算法,下面做简单介绍

2.一个列表数据任意组合

主要是利用自带的库:

#_*_ coding:utf-8 _*_
#__author__='dragon'
import itertools
list1 = [1,2,3,4,5]
list2 = []
for i in range(1,len(list1)+1):
  iter = itertools.combinations(list1,i)
  list2.append(list(iter))
print(list2)

运行结果:

[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5)], [(1, 2, 3, 4, 5)]]

3.排列的实现

#_*_ coding:utf-8 _*_
#__author__='dragon'
import itertools
list1 = [1,2,3,4,5]
list2 = []
for i in range(1,len(list1)+1):
  iter = itertools.permutations(list1,i)
  list2.append(list(iter))
print(list2)

运行结果:

[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 5, 2), (1, 5, 3), (1, 5, 4), (2, 1, 3), (2, 1, 4), (2, 1, 5), (2, 3, 1), (2, 3, 4), (2, 3, 5), (2, 4, 1), (2, 4, 3), (2, 4, 5), (2, 5, 1), (2, 5, 3), (2, 5, 4), (3, 1, 2), (3, 1, 4), (3, 1, 5), (3, 2, 1), (3, 2, 4), (3, 2, 5), (3, 4, 1), (3, 4, 2), (3, 4, 5), (3, 5, 1), (3, 5, 2), (3, 5, 4), (4, 1, 2), (4, 1, 3), (4, 1, 5), (4, 2, 1), (4, 2, 3), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5), (4, 5, 1), (4, 5, 2), (4, 5, 3), (5, 1, 2), (5, 1, 3), (5, 1, 4), (5, 2, 1), (5, 2, 3), (5, 2, 4), (5, 3, 1), (5, 3, 2), (5, 3, 4), (5, 4, 1), (5, 4, 2), (5, 4, 3)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 3), (1, 2, 4, 5), (1, 2, 5, 3), (1, 2, 5, 4), (1, 3, 2, 4), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3, 4, 5), (1, 3, 5, 2), (1, 3, 5, 4), (1, 4, 2, 3), (1, 4, 2, 5), (1, 4, 3, 2), (1, 4, 3, 5), (1, 4, 5, 2), (1, 4, 5, 3), (1, 5, 2, 3), (1, 5, 2, 4), (1, 5, 3, 2), (1, 5, 3, 4), (1, 5, 4, 2), (1, 5, 4, 3), (2, 1, 3, 4), (2, 1, 3, 5), (2, 1, 4, 3), (2, 1, 4, 5), (2, 1, 5, 3), (2, 1, 5, 4), (2, 3, 1, 4), (2, 3, 1, 5), (2, 3, 4, 1), (2, 3, 4, 5), (2, 3, 5, 1), (2, 3, 5, 4), (2, 4, 1, 3), (2, 4, 1, 5), (2, 4, 3, 1), (2, 4, 3, 5), (2, 4, 5, 1), (2, 4, 5, 3), (2, 5, 1, 3), (2, 5, 1, 4), (2, 5, 3, 1), (2, 5, 3, 4), (2, 5, 4, 1), (2, 5, 4, 3), (3, 1, 2, 4), (3, 1, 2, 5), (3, 1, 4, 2), (3, 1, 4, 5), (3, 1, 5, 2), (3, 1, 5, 4), (3, 2, 1, 4), (3, 2, 1, 5), (3, 2, 4, 1), (3, 2, 4, 5), (3, 2, 5, 1), (3, 2, 5, 4), (3, 4, 1, 2), (3, 4, 1, 5), (3, 4, 2, 1), (3, 4, 2, 5), (3, 4, 5, 1), (3, 4, 5, 2), (3, 5, 1, 2), (3, 5, 1, 4), (3, 5, 2, 1), (3, 5, 2, 4), (3, 5, 4, 1), (3, 5, 4, 2), (4, 1, 2, 3), (4, 1, 2, 5), (4, 1, 3, 2), (4, 1, 3, 5), (4, 1, 5, 2), (4, 1, 5, 3), (4, 2, 1, 3), (4, 2, 1, 5), (4, 2, 3, 1), (4, 2, 3, 5), (4, 2, 5, 1), (4, 2, 5, 3), (4, 3, 1, 2), (4, 3, 1, 5), (4, 3, 2, 1), (4, 3, 2, 5), (4, 3, 5, 1), (4, 3, 5, 2), (4, 5, 1, 2), (4, 5, 1, 3), (4, 5, 2, 1), (4, 5, 2, 3), (4, 5, 3, 1), (4, 5, 3, 2), (5, 1, 2, 3), (5, 1, 2, 4), (5, 1, 3, 2), (5, 1, 3, 4), (5, 1, 4, 2), (5, 1, 4, 3), (5, 2, 1, 3), (5, 2, 1, 4), (5, 2, 3, 1), (5, 2, 3, 4), (5, 2, 4, 1), (5, 2, 4, 3), (5, 3, 1, 2), (5, 3, 1, 4), (5, 3, 2, 1), (5, 3, 2, 4), (5, 3, 4, 1), (5, 3, 4, 2), (5, 4, 1, 2), (5, 4, 1, 3), (5, 4, 2, 1), (5, 4, 2, 3), (5, 4, 3, 1), (5, 4, 3, 2)], [(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1)]]

可以根据你需要随意组合

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,排列组合,算法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“Python实现的简单排列组合算法示例”

暂无“Python实现的简单排列组合算法示例”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。