read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式。pandas中还有读取表格的通用函数read_table。

接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符。

查看csv文件的内容如下;

In [10]: cat data.csv
index,name,comment,,,,
1,name_01,coment_01,,,,
2,name_02,coment_02,,,,
3,name_03,coment_03,,,,
4,name_04,coment_04,,,,
5,name_05,coment_05,,,,
6,name_06,coment_06,,,,
7,name_07,coment_07,,,,
8,name_08,coment_08,,,,
9,name_09,coment_09,,,,
10,name_10,coment_10,,,,
11,name_11,coment_11,,,,
12,name_12,coment_12,,,,
13,name_13,coment_13,,,,
14,name_14,coment_14,,,,
15,name_15,coment_15,,,,
16,name_16,coment_16,,,,
17,name_17,coment_17,,,,
18,name_18,coment_18,,,,
19,name_19,coment_19,,,,
20,name_20,coment_20,,,,
21,name_21,coment_21,,,,

使用pandas读取文件内容如下:In [11]: data1 = pd.read_table('data.csv',sep=',')

In [12]: type(data1)
Out[12]: pandas.core.frame.DataFrame
In [13]: data1
Out[13]: 
 index  name comment Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6
0  1 name_01 coment_01   NaN   NaN   NaN   NaN
1  2 name_02 coment_02   NaN   NaN   NaN   NaN
2  3 name_03 coment_03   NaN   NaN   NaN   NaN
3  4 name_04 coment_04   NaN   NaN   NaN   NaN
4  5 name_05 coment_05   NaN   NaN   NaN   NaN
5  6 name_06 coment_06   NaN   NaN   NaN   NaN
6  7 name_07 coment_07   NaN   NaN   NaN   NaN
7  8 name_08 coment_08   NaN   NaN   NaN   NaN
8  9 name_09 coment_09   NaN   NaN   NaN   NaN
9  10 name_10 coment_10   NaN   NaN   NaN   NaN
10  11 name_11 coment_11   NaN   NaN   NaN   NaN
11  12 name_12 coment_12   NaN   NaN   NaN   NaN
12  13 name_13 coment_13   NaN   NaN   NaN   NaN
13  14 name_14 coment_14   NaN   NaN   NaN   NaN
14  15 name_15 coment_15   NaN   NaN   NaN   NaN
15  16 name_16 coment_16   NaN   NaN   NaN   NaN
16  17 name_17 coment_17   NaN   NaN   NaN   NaN
17  18 name_18 coment_18   NaN   NaN   NaN   NaN
18  19 name_19 coment_19   NaN   NaN   NaN   NaN
19  20 name_20 coment_20   NaN   NaN   NaN   NaN
20  21 name_21 coment_21   NaN   NaN   NaN   NaN

不过在几番尝试下来,发现这个分隔符缺省的时候倒是也能够读出数据。

In [16]: data2 = pd.read_table('data.csv')
In [17]: data2
Out[17]: 
  index,name,comment,,,,
0 1,name_01,coment_01,,,,
1 2,name_02,coment_02,,,,
2 3,name_03,coment_03,,,,
3 4,name_04,coment_04,,,,
4 5,name_05,coment_05,,,,
5 6,name_06,coment_06,,,,
6 7,name_07,coment_07,,,,
7 8,name_08,coment_08,,,,
8 9,name_09,coment_09,,,,
9 10,name_10,coment_10,,,,
10 11,name_11,coment_11,,,,
11 12,name_12,coment_12,,,,
12 13,name_13,coment_13,,,,
13 14,name_14,coment_14,,,,
14 15,name_15,coment_15,,,,
15 16,name_16,coment_16,,,,
16 17,name_17,coment_17,,,,
17 18,name_18,coment_18,,,,
18 19,name_19,coment_19,,,,
19 20,name_20,coment_20,,,,
20 21,name_21,coment_21,,,,

不知道此功能对其他格式的数据的读取功能会不会有自动识别的功能,需要继续确认。

以上这篇使用pandas read_table读取csv文件的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
read,table,读取csv

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“使用pandas read_table读取csv文件的方法”

暂无“使用pandas read_table读取csv文件的方法”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。