这个错误是最新的错误哈,目前只在tensorflow上的github仓库上面有提出,所以你在百度上面找不到。

是个tensorflow的bug十天前提出的,只有github仓库上一个地方有提出。

NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: 

Failed to find any matching files for xxx
Traceback (most recent call last):
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1022, in _do_call
  return fn(*args)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1004, in _run_fn
  status, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\contextlib.py", line 66, in __exit__
  next(self.gen)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
  pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 
During handling of the above exception, another exception occurred:
 
Traceback (most recent call last):
 File "F:/DeepStock/DeepStock/testCapacity.py", line 77, in <module>
  prediction(out)
 File "F:/DeepStock/DeepStock/testCapacity.py", line 63, in prediction
  saver.restore(sess, 'D://model.ckpt')
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1428, in restore
  {self.saver_def.filename_tensor_name: save_path})
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 767, in run
  run_metadata_ptr)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 965, in _run
  feed_dict_string, options, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1015, in _do_run
  target_list, options, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1035, in _do_call
  raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 
Caused by op 'save_1/RestoreV2_10', defined at:
 File "F:/DeepStock/DeepStock/testCapacity.py", line 77, in <module>
  prediction(out)
 File "F:/DeepStock/DeepStock/testCapacity.py", line 60, in prediction
  saver = tf.train.Saver(tf.global_variables())
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1040, in __init__
  self.build()
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1070, in build
  restore_sequentially=self._restore_sequentially)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 675, in build
  restore_sequentially, reshape)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 402, in _AddRestoreOps
  tensors = self.restore_op(filename_tensor, saveable, preferred_shard)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 242, in restore_op
  [spec.tensor.dtype])[0])
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_io_ops.py", line 668, in restore_v2
  dtypes=dtypes, name=name)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
  op_def=op_def)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2327, in create_op
  original_op=self._default_original_op, op_def=op_def)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1226, in __init__
  self._traceback = _extract_stack()
 
NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 

改之前代码:

saver.restore(sess, 'D://model.ckpt')

将前面加上个点斜杠就好了。

saver.restore(sess, 'D://./model.ckpt')

如果你目录太复杂实在搞不明白用这个(默认加载checkout 文件中的最新的保存的数据):

module_file = tf.train.latest_checkpoint('E://deeplearning-master/deeplearning-master/tensorflow-program/save/')
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  if module_file is not None:
    saver.restore(sess, module_file)

以上这篇解决tensorflow1.x版本加载saver.restore目录报错的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
tensorflow,加载,saver.restore

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。