图片显示
pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用。
同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了
CIAFA10数据集
首先载入数据集,这里做了一些数据处理,包括图片尺寸、数据归一化等
import torch from torch.autograd import Variable import matplotlib.pyplot as plt import torchvision.datasets as dset import torchvision.transforms as transforms from autoencoder import AutoEncoder import torch.nn as nn import torchvision import numpy as np dataset = dset.CIFAR10(root='../train/data', download=True, transform=transforms.Compose([ transforms.Scale(200), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), transforms.Gray() ]))
在这里 dataset 是一个CIFAR10对象,(大家可以查看一下他的源代码)
方式一
dataset[1] = ([torch.FloatTensor of size 1x200x200],9)
载入的第二个数据是个tensor格式,包含一个标签 9
这里我们做的就是将torch.FloatTensor 转换为numpy,然后显示
b = dataset[1][0].numpy() #取数据,不取标签
因为这里的b仍然是1*200*200的大小,所以要重新reshape一下,适合输出图像
plt.imshow(b.reshape(200,200),cmap = 'gray') plt.show()
然后可以显示图像了
方式二
利用torch的接口
img = torchvision.utils.make_grid(dataset[1][0]).numpy() plt.imshow(np.transpose(img,(1,2,0))) plt.show()
这用np.transpose 是因为plt.imshow在显示 时候输入的是(imgsize,imgsieze,channels),而这里得到的img是(3,200,200)的格式,所以进行了转换,才能显示
以上这篇pytorch 数据集图片显示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
pytorch,数据集,图片显示
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。