有时我们希望在一个python的文件空间同时载入多个模型,例如 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。
Predict的核心为:
class Predict: def __init__(self....): 创建sess 创建恢复器tf.train.Saver 从恢复点恢复参数:tf.train.Saver.restore(...) def predict(self,...): sess.run(output,feed_dict={输入})
如果我们直接轮流生成10个不同的Predict 对象的话,我们发现tensorflow是会报类似于下面的错误:
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status pywrap_tensorflow.TF_GetCode(status)) tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512] [[Node: save/Assign_14 = Assign[T=DT_FLOAT, _class=["loc:@fullcont/Variable"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/cpu:0"](fullcont/Variable, save/RestoreV2_14)]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 121, in <module> pre2=Predict(label=new_list[1]) File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 47, in __init__ self.saver.restore(self.sess,self.ckpt.model_checkpoint_path) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1560, in restore {self.saver_def.filename_tensor_name: save_path}) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 895, in run run_metadata_ptr) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1124, in _run feed_dict_tensor, options, run_metadata) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1321, in _do_run options, run_metadata) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1340, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512]
关键就是:
Assign requires shapes of both tensors to match.意思是载入模型的时候 赋值失败。主要是因为不同对象里面的不同sess使用了同一进程空间下的相同的默认图graph。
正确的解决方法:
class Predict: def __init__(self....): self.graph=tf.Graph()#为每个类(实例)单独创建一个graph with self.graph.as_default(): self.saver=tf.train.import_meta_graph(...)#创建恢复器 #注意!恢复器必须要在新创建的图里面生成,否则会出错。 self.sess=tf.Session(graph=self.graph)#创建新的sess with self.sess.as_default(): with self.graph.as_default(): self.saver.restore(self.sess,...)#从恢复点恢复参数 def predict(self,...): sess.run(output,feed_dict={输入})
以上这篇Tensorflow 同时载入多个模型的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Tensorflow,载入,模型
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“Tensorflow 同时载入多个模型的实例讲解”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。