法一:

循环打印

模板

for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):
 print '\n', x, y

实例

# coding=utf-8

import tensorflow as tf


def func(in_put, layer_name, is_training=True):
 with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
  bn = tf.contrib.layers.batch_norm(inputs=in_put,
           decay=0.9,
           is_training=is_training,
           updates_collections=None)
 return bn

def main():

 with tf.Graph().as_default():
  # input_x
  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
  import numpy as np
  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
  # outputs
  output = func(input_x, 'my', is_training=True)
  with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   t = sess.run(output, feed_dict={input_x:i_p})

   # 法一: 循环打印
   for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):
    print '\n', x, y

if __name__ == "__main__":
 main()
2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)

<tf.Variable 'my/BatchNorm/beta:0' shape=(1,) dtype=float32_ref> [ 0.]

<tf.Variable 'my/BatchNorm/moving_mean:0' shape=(1,) dtype=float32_ref> [ 13.46412563]

<tf.Variable 'my/BatchNorm/moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704]

Process finished with exit code 0

法二:

指定变量名打印

模板

print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))

实例

# coding=utf-8

import tensorflow as tf


def func(in_put, layer_name, is_training=True):
 with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
  bn = tf.contrib.layers.batch_norm(inputs=in_put,
           decay=0.9,
           is_training=is_training,
           updates_collections=None)
 return bn

def main():

 with tf.Graph().as_default():
  # input_x
  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
  import numpy as np
  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
  # outputs
  output = func(input_x, 'my', is_training=True)
  with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   t = sess.run(output, feed_dict={input_x:i_p})

   # 法二: 指定变量名打印
   print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))
   print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0'))
   print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0'))

if __name__ == "__main__":
 main()
2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)

my/BatchNorm/beta:0 [ 0.]
my/BatchNorm/moving_mean:0 [ 8.08649635]
my/BatchNorm/moving_variance:0 [ 368.03442383]

Process finished with exit code 0

以上这篇tensorflow 打印内存中的变量方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
tensorflow,打印,变量

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“tensorflow 打印内存中的变量方法”

暂无“tensorflow 打印内存中的变量方法”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。