Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言。Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选。
由于其广泛的用途,Python拥有大量的库,使数据科学家可以更轻松地完成复杂的任务,而无需很多编写代码的麻烦。以下是数据科学的前3个Python库。
使用这些库将Python转化为一个科学的数据分析和建模工具。

1.NumPy

NumPy(Numerical Python的缩写)是配备有用资源的顶级库之一,可帮助数据科学家将Python转变为强大的科学分析和建模工具。流行的开源库可以在BSD许可下使用。它是用于在科学计算中执行任务的基础Python库。NumPy是一个更大的基于Python的开源工具生态系统的一部分,称为SciPy。

他的库为Python提供了大量的数据结构,可以毫不费力地执行多维数组和矩阵计算。除了用于求解线性代数方程和其他数学计算外,NumPy还可用作不同类型通用数据的通用多维容器。

此外,它与其他编程语言(如C / C ++和Fortran)完美集成。NumPy库的多功能性使其能够轻松快速地与各种数据库和工具结合使用。

2.Pandas

Pandas是另一个很棒的库,可以增强你的数据科学Python技能。与NumPy一样,它属于SciPy开源软件系列,可在BSD免费软件许可下使用。

Pandas提供多功能和强大的工具,用于整理数据结构和执行大量数据分析。该库适用于不完整,非结构化和无序的实际数据,并附带用于整形,聚合,分析和可视化数据集的工具。

此库中有三种类型的数据结构:

  • Series:单维,均匀阵列
  • DataFrame:具有异构类型列的二维
  • Panel:三维,大小可变阵列

例如,让我们看看Panda Python库(缩写为pd)可用于执行一些描述性统计计算。

让我们从导入库开始。

import pandas pd

让我们创建一个系列词典。

d 'Name':pd.Series'Alfrick''Michael''Wendy''Paul''Dusan''George''Andreas'
 'Irene''Sagar''Simon''James''Rose'
 'Years of Experience':pd.Series
 'Programming Language':pd.Series'Python''JavaScript''PHP''C++''Java''Scala''React''Ruby''Angular''PHP''Python''JavaScript'

让我们创建一个DataFrame。

df pd.DataFramed

下面是一个很好的输出表:

 Name Programming Language Years of Experience
 Alfrick    Python     
 Michael   JavaScript     
 Wendy     PHP     
  Paul     C++     
 Dusan     Java     
 George    Scala     
 Andreas    React     
 Irene     Ruby     
 Sagar    Angular     
 Simon     PHP     
 James    Python     
 Rose   JavaScript     

下面是这个示例的全部代码:

import pandas pd
#creating a dictionary of series
d 'Name':pd.Series'Alfrick''Michael''Wendy''Paul''Dusan''George''Andreas'
 'Irene''Sagar''Simon''James''Rose'
 'Years of Experience':pd.Series
 'Programming Language':pd.Series'Python''JavaScript''PHP''C++''Java''Scala''React''Ruby''Angular''PHP''Python''JavaScript'
#Create a DataFrame
df pd.DataFramed
printdf

3.Matplotlib

Matplotlib也是SciPy核心软件包的一部分,并在BSD许可下提供。它是一个流行的Python科学库,用于生成简单而强大的可视化。你可以使用Python框架进行数据科学生成创意图形,图表,直方图以及其他形状和图形,而无需担心编写多行代码。

例如,让我们看看如何使用Matplotlib库创建一个简单的条形图。

让我们从导入库开始。

matplotlib import pyplot plt

让我们为x轴和y轴生成值。

让我们调用绘制条形图的函数。

plt.xy  

让我们展示一下情节。

plt.  

这是条形图:

3个用于数据科学的顶级Python库

下面是这个示例的全部代码:

#importing Matplotlib Python library 
matplotlib import pyplot plt
#same as import matplotlib.pyplot as plt
#generating values for x-axis 
x 
#generating vaues for y-axis 
y 
#calling function for plotting the bar chart
plt.xy
#showing the plot
plt.

Python编程语言在数据处理和准备方面做得很好,但对于复杂的科学数据分析和建模却不那么重要。用于数据科学的顶级Python框架有助于填补这一空白,允许你执行复杂的数学计算并创建能够理解数据的复杂模型。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接

标签:
python,库,python,数据科学,python,数据科学顶级库

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com

评论“3个用于数据科学的顶级Python库”

暂无“3个用于数据科学的顶级Python库”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。