1. apply与transform
首先讲一下apply() 与transform()的相同点与不同点
相同点:
都能针对dataframe完成特征的计算,并且常常与groupby()方法一起使用。
不同点:
apply()里面可以跟自定义的函数,包括简单的求和函数以及复杂的特征间的差值函数等(注:apply不能直接使用agg()方法 / transform()中的python内置函数,例如sum、max、min、'count‘等方法)
transform() 里面不能跟自定义的特征交互函数,因为transform是真针对每一元素(即每一列特征操作)进行计算,也就是说在使用 transform() 方法时,需要记得三点:
1、它只能对每一列进行计算,所以在groupby()之后,.transform()之前是要指定要操作的列,这点也与apply有很大的不同。
2、由于是只能对每一列计算,所以方法的通用性相比apply()就局限了很多,例如只能求列的最大/最小/均值/方差/分箱等操作
3、transform还有什么用呢"color: #ff0000">2. 各方法耗时
分别计算在同样简单需求下各组合方法的计算时长
2.1 transform() 方法+自定义函数
2.2 transform() 方法+python内置方法
2.3 apply() 方法+自定义函数
2.4 agg() 方法+自定义函数
2.5 agg() 方法+python内置方法
2.6 结论
agg()+python内置方法的计算速度最快,其次是transform()+python内置方法。而 transform() 方法+自定义函数 的组合方法最慢,需要避免使用!
而下面两图中红框内容可观察发现:python自带的stats统计模块在pandas结构中的计算也非常慢,也需要避免使用!
3. 实例分析
需求:计算每个用户每天
某种行为消费次数、消费总额、消费均额、消费最大额、消费最小额
在几个终端支付、最常支付终端号、最常支付终端号的支付次数、最少支付终端号、最少支付终端号的支付次数
某种行为最常消费发生时间段、最常消费发生时间段的消费次数、最少消费发生时间段、最少消费发生时间段的消费次数
某种行为最早消费时间、最晚消费时间
原始数据信息:306626 x 9
具体选择哪种方法处理,根据实际情况确定,在面对复杂计算时,transform() 与apply()结合使用往往会有意想不到的效果!
需要注意的是,在与apply()一起使用时,transform需要进行去重操作,一般是通过指定一或多个列完成。
此外,匿名函数永远不是一个很好的办法,在进行简单计算时,无论是使用transfrom、agg还是apply,都要尽可能使用自带方法!!!
4. 小技巧
在使用apply()方法处理大数据级时,可以考虑使用joblib中的多线程/多进程模块构造相应函数执行计算,以下分别是采用多进程和单进程的耗时时长。
可以看到,在260W的数据集上,多进程比单进程的计算速度可以提升约17%~61% 。
总结
以上所述是小编给大家介绍的pandas中apply和transform方法的性能比较,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。