在crnn训练的时候需要用到lmdb格式的数据集,下面是python生成lmdb个是数据集的代码,注意一定要在linux系统下,否则会读入图像的时候出问题,可能遇到的问题都在代码里面注释了,看代码即可。
#-*- coding:utf-8 -*- import os import lmdb#先pip install这个模块哦 import cv2 import glob import numpy as np def checkImageIsValid(imageBin): if imageBin is None: return False imageBuf = np.fromstring(imageBin, dtype=np.uint8) img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE) if img is None: return False imgH, imgW = img.shape[0], img.shape[1] if imgH * imgW == 0: return False return True def writeCache(env, cache): with env.begin(write=True) as txn: for k, v in cache.iteritems(): txn.put(k, v) def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True): """ Create LMDB dataset for CRNN training. # ARGS: outputPath : LMDB output path imagePathList : list of image path labelList : list of corresponding groundtruth texts lexiconList : (optional) list of lexicon lists checkValid : if true, check the validity of every image """ # print (len(imagePathList) , len(labelList)) assert(len(imagePathList) == len(labelList)) nSamples = len(imagePathList) print '...................' env = lmdb.open(outputPath, map_size=8589934592)#1099511627776)所需要的磁盘空间的最小值,之前是1T,我改成了8g,否则会报磁盘空间不足,这个数字是字节 cache = {} cnt = 1 for i in xrange(nSamples): imagePath = imagePathList[i] label = labelList[i] if not os.path.exists(imagePath): print('%s does not exist' % imagePath) continue with open(imagePath, 'r') as f: imageBin = f.read() if checkValid: if not checkImageIsValid(imageBin): print('%s is not a valid image' % imagePath)#注意一定要在linux下,否则f.read就不可用了,就会输出这个信息 continue imageKey = 'image-%09d' % cnt labelKey = 'label-%09d' % cnt cache[imageKey] = imageBin cache[labelKey] = label if lexiconList: lexiconKey = 'lexicon-%09d' % cnt cache[lexiconKey] = ' '.join(lexiconList[i]) if cnt % 1000 == 0: writeCache(env, cache) cache = {} print('Written %d / %d' % (cnt, nSamples)) cnt += 1 nSamples = cnt - 1 cache['num-samples'] = str(nSamples) writeCache(env, cache) print('Created dataset with %d samples' % nSamples) def read_text(path): with open(path) as f: text = f.read() text = text.strip() return text if __name__ == '__main__': # lmdb 输出目录 outputPath = 'D:/ruanjianxiazai/tuxiangyangben/fengehou/train'#训练集和验证集要跑两遍这个程序,分两次生成 path = "D:/ruanjianxiazai/tuxiangyangben/fengehou/chenguang/*.jpg"#将txt与jpg的都放在同一个文件里面 imagePathList = glob.glob(path) print '------------',len(imagePathList),'------------' imgLabelLists = [] for p in imagePathList: try: imgLabelLists.append((p, read_text(p.replace('.jpg', '.txt')))) except: continue # imgLabelList = [ (p, read_text(p.replace('.jpg', '.txt'))) for p in imagePathList] # sort by labelList imgLabelList = sorted(imgLabelLists, key = lambda x:len(x[1])) imgPaths = [ p[0] for p in imgLabelList] txtLists = [ p[1] for p in imgLabelList] createDataset(outputPath, imgPaths, txtLists, lexiconList=None, checkValid=True)
以上这篇python生成lmdb格式的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,lmdb格式
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
狼山资源网 Copyright www.pvsay.com
暂无“python生成lmdb格式的文件实例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。