安装
CentOS安装 kafka
Kafka : http://kafka.apache.org/downloads
ZooLeeper : https://zookeeper.apache.org/releases.html
下载并解压
# 下载,并解压 $ wget https://archive.apache.org/dist/kafka/2.1.1/kafka_2.12-2.1.1.tgz $ tar -zxvf kafka_2.12-2.1.1.tgz $ mv kafka_2.12-2.1.1.tgz /data/kafka # 下载 zookeeper,解压 $ wget https://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.5.8/apache-zookeeper-3.5.8-bin.tar.gz $ tar -zxvf apache-zookeeper-3.5.8-bin.tar.gz $ mv apache-zookeeper-3.5.8-bin /data/zookeeper
启动 ZooKeeper
# 复制配置模版 $ cd /data/kafka/conf $ cp zoo_sample.cfg zoo.cfg # 看看配置需不需要改 $ vim zoo.cfg # 命令 $ ./bin/zkServer.sh start # 启动 $ ./bin/zkServer.sh status # 状态 $ ./bin/zkServer.sh stop # 停止 $ ./bin/zkServer.sh restart # 重启 # 使用客户端测试 $ ./bin/zkCli.sh -server localhost:2181 $ quit
启动 Kafka
# 备份配置 $ cd /data/kafka $ cp config/server.properties config/server.properties_copy # 修改配置 $ vim /data/kafka/config/server.properties # 集群配置下,每个 broker 的 id 是必须不同的 # broker.id=0 # 监听地址设置(内网) # listeners=PLAINTEXT://ip:9092 # 对外提供服务的IP、端口 # advertised.listeners=PLAINTEXT://106.75.84.97:9092 # 修改每个topic的默认分区参数num.partitions,默认是1,具体合适的取值需要根据服务器配置进程确定,UCloud.ukafka = 3 # num.partitions=3 # zookeeper 配置 # zookeeper.connect=localhost:2181 # 通过配置启动 kafka $ ./bin/kafka-server-start.sh config/server.properties& # 状态查看 $ ps -ef|grep kafka $ jps
docker下安装Kafka
docker pull wurstmeister/zookeeper docker run -d --name zookeeper -p 2181:2181 wurstmeister/zookeeper
docker pull wurstmeister/kafka docker run -d --name kafka --publish 9092:9092 --link zookeeper --env KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 --env KAFKA_ADVERTISED_HOST_NAME=192.168.1.111 --env KAFKA_ADVERTISED_PORT=9092 wurstmeister/kafka
介绍
- Broker:消息中间件处理节点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
- Topic:一类消息,例如page view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。
- Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。
- Segment:partition物理上由多个segment组成,下面2.2和2.3有详细说明。
- offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息。
kafka partition 和 consumer 数目关系
- 如果consumer比partition多是浪费,因为kafka的设计是在一个partition上是不允许并发的,所以consumer数不要大于partition数 。
- 如果consumer比partition少,一个consumer会对应于多个partitions,这里主要合理分配consumer数和partition数,否则会导致partition里面的数据被取的不均匀 。最好partiton数目是consumer数目的整数倍,所以partition数目很重要,比如取24,就很容易设定consumer数目 。
- 如果consumer从多个partition读到数据,不保证数据间的顺序性,kafka只保证在一个partition上数据是有序的,但多个partition,根据你读的顺序会有不同
- 增减consumer,broker,partition会导致rebalance,所以rebalance后consumer对应的partition会发生变化 快速开始
在 .NET Core 项目中安装组件
Install-Package Confluent.Kafka
开源地址: https://github.com/confluentinc/confluent-kafka-dotnet
添加 IKafkaService
服务接口
public interface IKafkaService { /// <summary> /// 发送消息至指定主题 /// </summary> /// <typeparam name="TMessage"></typeparam> /// <param name="topicName"></param> /// <param name="message"></param> /// <returns></returns> Task PublishAsync<TMessage>(string topicName, TMessage message) where TMessage : class; /// <summary> /// 从指定主题订阅消息 /// </summary> /// <typeparam name="TMessage"></typeparam> /// <param name="topics"></param> /// <param name="messageFunc"></param> /// <param name="cancellationToken"></param> /// <returns></returns> Task SubscribeAsync<TMessage>(IEnumerable<string> topics, Action<TMessage> messageFunc, CancellationToken cancellationToken) where TMessage : class; }
实现 IKafkaService
public class KafkaService : IKafkaService { public async Task PublishAsync<TMessage>(string topicName, TMessage message) where TMessage : class { var config = new ProducerConfig { BootstrapServers = "127.0.0.1:9092" }; using var producer = new ProducerBuilder<string, string>(config).Build(); await producer.ProduceAsync(topicName, new Message<string, string> { Key = Guid.NewGuid().ToString(), Value = message.SerializeToJson() }); } public async Task SubscribeAsync<TMessage>(IEnumerable<string> topics, Action<TMessage> messageFunc, CancellationToken cancellationToken) where TMessage : class { var config = new ConsumerConfig { BootstrapServers = "127.0.0.1:9092", GroupId = "crow-consumer", EnableAutoCommit = false, StatisticsIntervalMs = 5000, SessionTimeoutMs = 6000, AutoOffsetReset = AutoOffsetReset.Earliest, EnablePartitionEof = true }; //const int commitPeriod = 5; using var consumer = new ConsumerBuilder<Ignore, string>(config) .SetErrorHandler((_, e) => { Console.WriteLine($"Error: {e.Reason}"); }) .SetStatisticsHandler((_, json) => { Console.WriteLine($" - {DateTime.Now:yyyy-MM-dd HH:mm:ss} > 消息监听中.."); }) .SetPartitionsAssignedHandler((c, partitions) => { string partitionsStr = string.Join(", ", partitions); Console.WriteLine($" - 分配的 kafka 分区: {partitionsStr}"); }) .SetPartitionsRevokedHandler((c, partitions) => { string partitionsStr = string.Join(", ", partitions); Console.WriteLine($" - 回收了 kafka 的分区: {partitionsStr}"); }) .Build(); consumer.Subscribe(topics); try { while (true) { try { var consumeResult = consumer.Consume(cancellationToken); Console.WriteLine($"Consumed message '{consumeResult.Message"); if (consumeResult.IsPartitionEOF) { Console.WriteLine($" - {DateTime.Now:yyyy-MM-dd HH:mm:ss} 已经到底了:{consumeResult.Topic}, partition {consumeResult.Partition}, offset {consumeResult.Offset}."); continue; } TMessage messageResult = null; try { messageResult = JsonConvert.DeserializeObject<TMessage>(consumeResult.Message.Value); } catch (Exception ex) { var errorMessage = $" - {DateTime.Now:yyyy-MM-dd HH:mm:ss}【Exception 消息反序列化失败,Value:{consumeResult.Message.Value}】 :{ex.StackTrace"; Console.WriteLine(errorMessage); messageResult = null; } if (messageResult != null/* && consumeResult.Offset % commitPeriod == 0*/) { messageFunc(messageResult); try { consumer.Commit(consumeResult); } catch (KafkaException e) { Console.WriteLine(e.Message); } } } catch (ConsumeException e) { Console.WriteLine($"Consume error: {e.Error.Reason}"); } } } catch (OperationCanceledException) { Console.WriteLine("Closing consumer."); consumer.Close(); } await Task.CompletedTask; } }
注入 IKafkaService
,在需要使用的地方直接调用即可。
public class MessageService : IMessageService, ITransientDependency { private readonly IKafkaService _kafkaService; public MessageService(IKafkaService kafkaService) { _kafkaService = kafkaService; } public async Task RequestTraceAdded(XxxEventData eventData) { await _kafkaService.PublishAsync(eventData.TopicName, eventData); } }
以上相当于一个生产者,当我们消息队列发出后,还需一个消费者进行消费,所以可以使用一个控制台项目接收消息来处理业务。
var cts = new CancellationTokenSource(); Console.CancelKeyPress += (_, e) => { e.Cancel = true; cts.Cancel(); }; await kafkaService.SubscribeAsync<XxxEventData>(topics, async (eventData) => { // Your logic Console.WriteLine($" - {eventData.EventTime:yyyy-MM-dd HH:mm:ss} 【{eventData.TopicName}】- > 已处理"); }, cts.Token);
在 IKafkaService
中已经写了订阅消息的接口,这里也是注入后直接使用即可。
生产者消费者示例
生产者
static async Task Main(string[] args) { if (args.Length != 2) { Console.WriteLine("Usage: .. brokerList topicName"); // 127.0.0.1:9092 helloTopic return; } var brokerList = args.First(); var topicName = args.Last(); var config = new ProducerConfig { BootstrapServers = brokerList }; using var producer = new ProducerBuilder<string, string>(config).Build(); Console.WriteLine("\n-----------------------------------------------------------------------"); Console.WriteLine($"Producer {producer.Name} producing on topic {topicName}."); Console.WriteLine("-----------------------------------------------------------------------"); Console.WriteLine("To create a kafka message with UTF-8 encoded key and value:"); Console.WriteLine("> key value<Enter>"); Console.WriteLine("To create a kafka message with a null key and UTF-8 encoded value:"); Console.WriteLine("> value<enter>"); Console.WriteLine("Ctrl-C to quit.\n"); var cancelled = false; Console.CancelKeyPress += (_, e) => { e.Cancel = true; cancelled = true; }; while (!cancelled) { Console.Write("> "); var text = string.Empty; try { text = Console.ReadLine(); } catch (IOException) { break; } if (string.IsNullOrWhiteSpace(text)) { break; } var key = string.Empty; var val = text; var index = text.IndexOf(" "); if (index != -1) { key = text.Substring(0, index); val = text.Substring(index + 1); } try { var deliveryResult = await producer.ProduceAsync(topicName, new Message<string, string> { Key = key, Value = val }); Console.WriteLine($"delivered to: {deliveryResult.TopicPartitionOffset}"); } catch (ProduceException<string, string> e) { Console.WriteLine($"failed to deliver message: {e.Message} [{e.Error.Code}]"); } } }
消费者
static void Main(string[] args) { if (args.Length != 2) { Console.WriteLine("Usage: .. brokerList topicName"); // 127.0.0.1:9092 helloTopic return; } var brokerList = args.First(); var topicName = args.Last(); Console.WriteLine($"Started consumer, Ctrl-C to stop consuming"); var cts = new CancellationTokenSource(); Console.CancelKeyPress += (_, e) => { e.Cancel = true; cts.Cancel(); }; var config = new ConsumerConfig { BootstrapServers = brokerList, GroupId = "consumer", EnableAutoCommit = false, StatisticsIntervalMs = 5000, SessionTimeoutMs = 6000, AutoOffsetReset = AutoOffsetReset.Earliest, EnablePartitionEof = true }; const int commitPeriod = 5; using var consumer = new ConsumerBuilder<Ignore, string>(config) .SetErrorHandler((_, e) => { Console.WriteLine($"Error: {e.Reason}"); }) .SetStatisticsHandler((_, json) => { Console.WriteLine($" - {DateTime.Now:yyyy-MM-dd HH:mm:ss} > monitoring.."); //Console.WriteLine($"Statistics: {json}"); }) .SetPartitionsAssignedHandler((c, partitions) => { Console.WriteLine($"Assigned partitions: [{string.Join(", ", partitions)}]"); }) .SetPartitionsRevokedHandler((c, partitions) => { Console.WriteLine($"Revoking assignment: [{string.Join(", ", partitions)}]"); }) .Build(); consumer.Subscribe(topicName); try { while (true) { try { var consumeResult = consumer.Consume(cts.Token); if (consumeResult.IsPartitionEOF) { Console.WriteLine($"Reached end of topic {consumeResult.Topic}, partition {consumeResult.Partition}, offset {consumeResult.Offset}."); continue; } Console.WriteLine($"Received message at {consumeResult.TopicPartitionOffset}: {consumeResult.Message.Value}"); if (consumeResult.Offset % commitPeriod == 0) { try { consumer.Commit(consumeResult); } catch (KafkaException e) { Console.WriteLine($"Commit error: {e.Error.Reason}"); } } } catch (ConsumeException e) { Console.WriteLine($"Consume error: {e.Error.Reason}"); } } } catch (OperationCanceledException) { Console.WriteLine("Closing consumer."); consumer.Close(); } }
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。